1. India invented the Number system. Pingalacharya invented ‘zero.’ in 200 BC.

2. Indians discovered the size, shape, rotation and gravity of earth about 1000 years before Kelvin,Galileo,Newton and Copper Nicus. Aryabhatta I was the first to explain spherical shape,size ,diameter,rotaion and correct speed of Earth in 499 AD.

3. Newton’s law of Gravitational force is an ancient Indian discovery. In Siddhanta Siromani ( Bhuvanakosam 6 ) Bhaskaracharya II described about gravity of earth about 400 years before Sir Isaac Newton.

4. Bhaskaracharya II discovered Differential calculus.

5. Theory of Continued Fraction was discovered by Bhaskaracharya II.

6. The place value system, the decimal system was developed in India in 100 BC.

7. Indians discovered Arithmetic and Geometric progression. Arithmetic progression is explained in Yajurveda.

8. Govindaswamin discovered Newton Gauss Interpolation formula about 1800 years before Newton.

9. Vateswaracharya discovered Newton Gauss Backward Interpolation formula about 1000 years before Newton.

10. Madhavacharya discovered Taylor series of Sine and Cosine function about 250 years before Taylor.

11. Madhavacharya discovered Newton Power series.

12. Madhavacharya discovered Gregory Leibnitz series for the Inverse Tangent about 280 years before Gregory.

13. Madhavacharya discovered Leibnitz power series for pi about 300 years before Leibnitz.

14. Parameswaracharya discovered Lhuiler’s formula about 400 years before Lhuiler.

16. Theorems relating the diameter,volume and circumference of circles discovered by Madhavacharya, Puthumana Somayaji, Aryabhatta, Bhaskaracharya…….

17. The value of pi was first calculated by Aryabhatta I in 499 AD,ie more than 1350 years before Lindemann

18. Boudhayana discovered Pythagorus Theorem in 800BC. ie 300 years before Pythagorus.

19. Algebra, trigonometry and calculus came from India. Quadratic equations were by Sridharacharya in the 11th Century.

20. While the Greeks were using only upto a maximum value 1000, Indians could go upto 18th power of 10 level during Vedic period.

21. Infinity was well known for ancient Indians. BhaskaracharyaII in Beejaganitha (stanza-20) has given clear explanation with examples for infinity

22. Positive and Negative numbers and their calculations were explained first by Brahmagupta in his book Brahmasputa Siddhanta.

23. Sterling formula was discovered by Brahmagupta about 1000 years before Sterling.

24. Demovier’s theorem of positive integral was discovered by Brahmagupta in 628 A.D, i.e around 1000 years before Demovier.

25. Puthumana Somayaji discovered Demovier’s infinite series in 1140 AD,i.e more than 200 years before Demovier.

26. Maharshi Sushruta is the father of surgery. 2600 years ago he and health scientists of his time conducted surgeries like cesareans, cataract, fractures and urinary stones. Usage of anesthesia was well known in ancient India. He was the first person to perform plastic surgery.

27. When many cultures in the world were only nomadic forest dwellers over 5000 years ago, Indians established Harappan culture in Sindhu Valley (Indus Valley Civilization).

28. The world’s first University was established in Takshila in 700BC. More than 10,500 students from all over the world studied more than 60 subjects. The University of Nalanda built in the 4th century BC was one of the greatest achievements of ancient India in the field of education.

29. According to the Forbes magazine, Sanskrit is the most suitable language for computer software.

30. Ayurveda is the earliest school of medicine known to humans.

31. Although western media portray modern images of India as poverty stricken and underdeveloped through political corruption, India was once the richest empire on earth.

32. According to the Gemmological Institute of America, until 1896, India was the only source of diamonds to the world.

33. USA based IEEE has proved what has been a century-old suspicion amongst academics that the pioneer of wireless communication was Professor Jagdeesh Bose and not Marconi.

34. The earliest reservoir and dam for irrigation was built in Saurashtra.

35. Chess was invented in India.

36. The first philosopher who formulated ideas about the atom in a systematic manner was Kanada who lived in the 6th century B.C.

37. All the atomic reactors in the world are in Shiva Linga Shape which is an Indian contribution.

38. Padanjali maharshi discovered Sound waves.

39. Yoga is an ancient Indian gift to the world.

40. Shayanacharya discovered velocity of light.

41. Maharshi Bharadwaja discovered different types of light rays.

42. Maharshi Bharadwaja was the first person to give definition about aeroplane. He explained about different types aeroplanes in his book “Vimana Thantra” about 2000 years before Right Brothers.

43. Maharshi Bharadwaja discovered spectrometer. In his “Yantra Sarvaswa” he explained about more than 100 instruments.

44. The different colours of light, VIBGYOR are mentioned in Rigveda which was written more than 6000 years ago.

45. Maharshi Charaka discovered Psychology and Quantum healing system.

46. Varahamihira discovered the concept of “Budding of plants”.

47. Varahamihira discovered Comets in 505 AD, i.e more than 1100 years before Haley.

48. Gouthama Maharshi discovered the wave nature of sound about 1400 years before Hyghen.

49. Seven continents are mentioned in Padmapurana.

Aryabhatta worked out the value of pi. He worked out the area of a triangle. His exact words were, “ribhujasya phalashariram samadalakoti bhujardhasamvargah” which translates “for a triangle, the result of a perpendicular with the half side is the area”. He discussed the idea of sin. He worked on the summation of series of squares and cubes (square-root and cube-root). He talks about the “rule of three” which is to find the value of x when three numbers a, b and c is given. Aryabhatta calculates the volume of a sphere. Aryabhatta described the model of the solar system, where the sun and moon are each carried by epicycles that in turn revolve around the Earth. He also talks about the number of rotations of the earth, describes that the earth rotating on its axis, the order of the planets in terms of distance from earth. Aryabhatta describes the solar and lunar eclipses scientifically. Aryabhatta describes that the moon and planets shine by light reflected from the sun. Aryabhatta calculated the sidereal rotation which is the rotation of the earth with respect to the stars as 23 hours, 56 minutes and 4.1 seconds. He calculated the length of the sidereal year as 365 days, 6 hours, 12 minutes and 30 seconds. The actual value shows that his calculations was an error of 3 minutes and 20 seconds over a year.

Aryabhatta, also known as Aryabhatta I or Aryabhata (476-550?), was a famous Indian mathematician and astronomer, born in a place called Taregana, in Bihar (though some people do not agree with the evidence). Taregana (also spelled as Taragna) which literally means songs of stars in Bihari, is a small place situated nearly 30 km from Patna, which was then known as Kusumpura later Pataliputra, the capital of the Gupta Empire. This is the very empire that has been dubbed as the “golden period in Indian history”. The best introduction to the genius of past is seen in the words of Bhaskara I who said, “Aryabhatta is the master who, after reaching the furthest shores and plumbing the inmost depths of the sea of ultimate knowledge of mathematics, kinematics and spherics, handed over the three sciences to the learned world”.

The Zero, decimal system, Indian numerals, astronomy, astrology, trigonometry, ayurveda, chemistry, everything even dream-analysis are some of the numerous contributions of scholars from India.

Unfortunately, the bias has always been against giving no credit whatsoever to the Indian mind. For instance, I was taught in school that the numerals we use are "Arabic Numerals". Why?

Why the shameless lying instead of giving credit where it is due for monumental discoveries?

The story of numbers is the story of civilization. Terry Jones ("Monty Python's Flying Circus") goes on a humor-filled journey to recount the amazing tale behind Indian numerals.

Interesting Facts: * Baudhayana gave the 'Pythagoras theorem' centuries before the Greeks in 800 BC. * Pingala (400 BC) invented the binary number system which is the basic of computer operations. * Indian astronomer, Aryabhatta was the first to have propounded the theory that the earth was a sphere in the 5th century. * Indian astronomer, Brahmagupta, estimated in the 7th century that the circumference of the earth was 5000 yojanas. A yojana is around 7.2 kms. Calculating on this basis we see that the estimate of 36,000 kms as the earth's circumference comes quite close to the actual circumference known today.

Kak [1] notes that Sayana, Prime-minister of India in the 14th century, could decipher an extract from The Rigveda from which followed that the value of the velocity of light was equal to 300,000 km/s. Note that in Europe, Danish astronomer O. Römer could measure the same value of the velocity of light only in 1676, i.e. around 150 year later.

We have different standardized systems for measuring weight, time, temperature and pressure to name a few and over time we have all so had several different scales for music. What I would like to do is explain to you that there is only one system for everything and because of this history has been fabricated to hide this information that explains the absolute truth behind our very existence. Our standard forms of measurement used by industry around the world, the French Metric system and Imperial or English inch are there to intentionally misguide you, the Vedic Metric it is the least known only because it is the industrial secret of corporations like Sony, Westinghouse, J P Morgan, Hertz, Uniden, Bose, Intel computer processors, Shell, BP, Mobil, Ferrari, Toyota, Ford, Hyundai, NASA, Boeing and many more.

“--The ancient Hindus could navigate the air, and not only navigate it, but fight battles in it like so many war-eagles combating for the domination of the clouds. To be so perfect in aeronautics, they must have known all the arts and sciences related to the science, including the strata and currents of the atmosphere, the relative temperature, humidity, density and specific gravity of the various gases...” ~ Col. Henry S Olcott (1832 – 1907)

--Walter Raymond Drake (1913 - 1989), a British disciple of Charles Fort, published nine books on the ancient astronaut theme, the first four years earlier than Erich Von Däniken's bestseller Chariots of the Gods.

In his book Gods and Spacemen in the Ancient East, he wrote:

"The Ramayana telling in magic imagery the quest of Rama for his stolen wife Sita, has thrilled the people of India for thousands of years; generations of wandering story-tellers have recited its 24,000 verses to marveling audiences captivated by this brilliant panorama of the fantastic past, the passions of heroic love, tragedies of dark revenge, aerial battles between Gods and Demons waged with nuclear bombs; the glory of noble deeds; the thrilling poetry of life, the philosophy of destiny and death.

This wonderful epic of the ‘Ramayana’ the inspiration of the world’s great classic literature, intrigues us most today by its frequent allusions to aerial vehicles and annihilating bombs, which we consider to be inventions of our own 20th century impossible in the far past. Students of Sanskrit literature soon revise their preconceived ideas and find that the heroes of Ancient India were apparently equipped with aircraft and missiles more sophisticated than those we boast today." Alexander Gorbovsky an expert at the Russian Munitions Agency has written:

“The Mahabharata - an ancient Indian epic compiled 3000 years ago - contains a reference to a terrible weapon. Regrettably, in our age of the atomic bomb, the description of this weapon exploding will not appear to be an exaggeration: '.... a blazing shaft possessed of the effulgence of a smokeless fire (was) let off...'. That was how this weapon was perceived. The consequences of its use also evoke involuntary associations. '... This makes the bodies of the dead unidentifiable. ... The survivors lose their nails and hair, and their food becomes unfit for eating. For several subsequent years the Sun, the stars and the sky remain shrouded with clouds and bad weather'.

"This weapon was known as the Weapon of Brahma or the Flame of Indra......".

(source: Riddles of Ancient History - Alexander Gorbovsky, The Sputnik Magazine, Moscow, Sept. 1986, p. 137).

Date: Sunday, 13-February-2011, 1:39 AM | Message # 4

--dragon lord--

Group: undead

Messages: 12046

Status: Offline

I-SERVE (Institute of Scientific Research on Vedas) is a scientific research institute dedicated to dig out the technical details of Vedic sciences from ancient Indian literature. It is registered as a charitable non-profit making Trust by a group of scholars & scientist, well versed both in ancient and modern sciences. It is recognized as a SIRO (scientific and Industrial Research Organization) by DSIR (Dept of Scientific & Industrial Research, Ministry of Science & Technology, Govt. of India). The Institute aims at presenting a nature friendly, Non-Hazardous and Non-pollution producing alternative science. The beneficiary of this research work will be the whole mankind without any barricades of caste, creed or sex.

Date: Sunday, 13-February-2011, 1:49 AM | Message # 5

--dragon lord--

Group: undead

Messages: 12046

Status: Offline

A close investigation of the Vedic system of mathematics shows that it was much more advanced than the mathematical systems of the civilizations of the Nile or the Euphrates. The Vedic mathematicians had developed the decimal system of tens, hundreds, thousands, etc. where the remainder from one column of numbers is carried over to the next. The advantage of this system of nine number signs and a zero is that it allows for calculations to be easily made. Further, it has been said that the introduction of zero, or sunya as the Indians called it, in an operational sense as a definite part of a number system, marks one of the most important developments in the entire history of mathematics. The earliest preserved examples of the number system which is still in use today are found on several stone columns erected in India by King Ashoka in about 250 B.C.E. [4 ] Similar inscriptions are found in caves near Poona (100 B.C.E.) and Nasik (200 C.E.). [5] These earliest Indian numerals appear in a script called brahmi.

After 700 C.E. another notation, called by the name "Indian numerals," which is said to have evolved from the brahmi numerals, assumed common usage, spreading to Arabia and from there around the world. When Arabic numerals (the name they had then become known by) came into common use throughout the Arabian empire, which extended from India to Spain, Europeans called them "Arabic notations," because they received them from the Arabians. However, the Arabians themselves called them "Indian figures" (Al-Arqan-Al-Hindu) and mathematics itself was called "the Indian art" (hindisat).

Aryabhatta, an astronomer mathematician who flourished at the beginning of the 6th century, introduced sines and versed sines-a great improvement over the clumsy half-cords of Ptolemy. A.L. Basham, foremost authority on ancient India, writes in The Wonder That Was India,

Medieval Indian mathematicians, such as Brahmagupta (seventh century), Mahavira (ninth century), and Bhaskara (twelfth century), made several discoveries which in Europe were not known until the Renaissance or later. They understood the import of positive and negative quantities, evolved sound systems of extracting square and cube roots, and could solve quadratic and certain types of indeterminate equations." [6] Mahavira's most noteworthy contribution is his treatment of fractions for the first time and his rule for dividing one fraction by another, which did not appear in Europe until the 16th century.

The great Indian mathematician Bhaskaracharya (1150 C.E.) produced extensive treatises on both plane and spherical trigonometry and algebra, and his works contain remarkable solutions of problems which were not discovered in Europe until the seventeenth and eighteenth centuries. He preceded Newton by over 500 years in the discovery of the principles of differential calculus. A.L. Basham writes further, "The mathematical implications of zero (sunya) and infinity, never more than vaguely realized by classical authorities, were fully understood in medieval India. Earlier mathematicians had taught that X/0 = X, but Bhaskara proved the contrary. He also established mathematically what had been recognized in Indian theology at least a millennium earlier: that infinity, however divided, remains infinite, represented by the equation oo /X = oo." In the 14th century, Madhava, isolated in South India, developed a power series for the arc tangent function, apparently without the use of calculus, allowing the calculation of pi to any number of decimal places (since arctan 1 = pi/4). Whether he accomplished this by inventing a system as good as calculus or without the aid of calculus; either way it is astonishing.

John Hagalin and David Lynch Describe the science of peace.

world peace. Everybody wants world peace. Nobody believes there can be world peace. It's a nice idea. It's like a sweet little old lady idea. It's meaningless. It's never going to happen. And we thing it's got to be this way.

There is a science, Vedic Science, and there are technologies connected with it. Science of Consciousness, science of the unified field. Technologies from that can easily bring peace. And peace isn't just the absence of war, it's the absence of negativity. Peace is real and it comes from the unified field. The unified field can be enlivened in the individual and bring enlightenment and be enlivened in the world and bring peace. Doctor John Hagelin could talk for the next ten weeks about this most profound science that just now, quantum physics is just approaching Vedic Science.

John Hagelin - There are 300,000 books and manuscripts on peace. Each of these books and manuscripts have been read by an average of 3 people, including the author and publisher. Who wants to read another book about peace? We want to create peace. And there's an actual science of peace. Because the field of consciousness is the field of unity. The field of bliss. The field of peace on a tangible, palpable, powerful, physical level millions of times more powerful then the nuclear force if we can just access it. But consciousness can access it. What we need are more peacemakers who develop their consciousness until they become lighthouses of peace, radiating peace.

Date: Wednesday, 20-April-2011, 0:13 AM | Message # 8

--dragon lord--

Group: Users

Messages: 4452

Status: Offline

Added (14-April-2011, 9:51 PM) --------------------------------------------- (Surya Sidhantha by Bhaskaraachaarya). In surya sidhantha, bhaskaraachaarya calculates the time taken for the earth on orbit the sun to 9 decimal places (365.258756484 days). The modern accepted measurement is 365.2596 days. The different between the ancient indian measurement (1500 years ago) and the modern measurement is only 0.00085 days (0.0002%). Bharat has given the world the idea of smallest and largest measure of time – from 34,000th a second (Kranti) to 4.32 billion years (kalpa).

(Bhugoladhyaya , surya sidhanta). Arya bhatta was the first to deduce that the earth is round. It must be mentioned that western science accepted that earth is spherical only in 14th century. Also he was the first to postulate it is the earth that rotates and the stars are stationary. This was about a 1000 year before Copernicus.

The globe of earth stands suspended in space at the center of a circular frame that is at the center of the Bhagola surrounded by water, soil, fire and air and is circular on all sided that is spherical’. (Aryabhatiya - chapter 4, verse 6)

Day length - 23 hrs – 56 mts – 4 scds – 0.1 fractions – ‘aryabhatta’ 23 hrs – 56 mts – 4 scds – 0.091 fractions – modern value

Science of yajna or e= mc2

Aitareya rishi said yjna is conversion of consciousness into matter and matter in to consciousness through vital force. Einsein he discovered that matter and energy are inter-convertible as per his formula e=mc2.this lead to the discovery of atomic energy.The vedic seers have discovered a still superior form of energy viz. the power of consciousness. It is the consciousness, which activate our vital energies, which in turn, can bring about any transformation.

The power of consciousness is represented by mantra, vital energy are the Deva’s (God) when we say that Deva’s are invoked by mantras, we simply mean to say that vital energies are activated by the use of psychic power. These psychic powers, which are supra-physical, can control anything physical. Thus, by use of mantras and by invoking Deva’s all of our desires can be fulfilled. Aitareya who says that yajna s a process of converting consciousness into matter and matter into consciousness, since consciousness and matter cannot be interchanged directly, the interchange takes place via vital force.

In vedic quotation interestingly mentioned the seven rays of sun. In Rig veda these are nothing but the colors –VIBGYOR, RV supports ‘the seven rays of the sun are falling, there I live with my family’. (RV8-72-16) These statements are evident to assume the seven colors of sunrays were very well known, even during the vedic period.

Rishi Kanaada - forerunner to Archimedes and Einstein: Kanaada or Kashypa lived in the 6th century B.C. from his childhood; kashyapa displayed a keen sense of observation. Kanada was the first expounder of the atomic concept in the universe. He was the first to point out he binary molecule and atom. Everything in the universe, he said ‘is made up of Paramanu(Nuclear).

When matter divided and sub-divided until further division is not possible, the remaining indivisible entity is called Paramanu.

Paramanu are eternal and indestructible and do not exist in free state nor can they be sensed through any human organ’. Kanaada propounded Vaiseshika Sutras (peculiarity Aphorisms). They are a blend of science, philosophy and religion.

A little known school of scholars in southwest India discovered one of the founding principles of modern mathematics hundreds of years before Newton according to new research.

Dr George Gheverghese Joseph from The University of Manchester says the 'Kerala School' identified the 'infinite series'- one of the basic components of calculus - in about 1350.

The discovery is currently - and wrongly - attributed in books to Sir Isaac Newton and Gottfried Leibnitz at the end of the seventeenth centuries.

The team from the Universities of Manchester and Exeter reveal the Kerala School also discovered what amounted to the Pi series and used it to calculate Pi correct to 9, 10 and later 17 decimal places.

And there is strong circumstantial evidence that the Indians passed on their discoveries to mathematically knowledgeable Jesuit missionaries who visited India during the fifteenth century.

That knowledge, they argue, may have eventually been passed on to Newton himself.

Dr Joseph made the revelations while trawling through obscure Indian papers for a yet to be published third edition of his best selling book 'The Crest of the Peacock: the Non-European Roots of Mathematics' by Princeton University Press.

He said: "The beginnings of modern maths is usually seen as a European achievement but the discoveries in medieval India between the fourteenth and sixteenth centuries have been ignored or forgotten.

"The brilliance of Newton's work at the end of the seventeenth century stands undiminished - especially when it came to the algorithms of calculus.

"But other names from the Kerala School, notably Madhava and Nilakantha, should stand shoulder to shoulder with him as they discovered the other great component of calculus- infinite series.

"There were many reasons why the contribution of the Kerala school has not been acknowledged - a prime reason is neglect of scientific ideas emanating from the Non-European world - a legacy of European colonialism and beyond.

"But there is also little knowledge of the medieval form of the local language of Kerala, Malayalam, in which some of most seminal texts, such as the Yuktibhasa, from much of the documentation of this remarkable mathematics is written."

He added: "For some unfathomable reasons, the standard of evidence required to claim transmission of knowledge from East to West is greater than the standard of evidence required to knowledge from West to East.

"Certainly it's hard to imagine that the West would abandon a 500-year-old tradition of importing knowledge and books from India and the Islamic world.

"But we've found evidence which goes far beyond that: for example, there was plenty of opportunity to collect the information as European Jesuits were present in the area at that time.

"They were learned with a strong background in maths and were well versed in the local languages.

"And there was strong motivation: Pope Gregory XIII set up a committee to look into modernising the Julian calendar.

"On the committee was the German Jesuit astronomer/mathematician Clavius who repeatedly requested information on how people constructed calendars in other parts of the world. The Kerala School was undoubtedly a leading light in this area.

"Similarly there was a rising need for better navigational methods including keeping accurate time on voyages of exploration and large prizes were offered to mathematicians who specialised in astronomy.

"Again, there were many such requests for information across the world from leading Jesuit researchers in Europe. Kerala mathematicians were hugely skilled in this area."

In the Hindi Book " Pracheen Bharateeya Ganit", you can read such information. Paramewara of Vadassery, Kerala, stated the priciples of Gregory series, differencial calculus, etc. In article the Malayalam journal Pragati(Kozhickode, September 1983) throws light on this and several other Indian firsts in Science and Mathematics. Also useful is the monograph Science in Sanskrit authored by Dr.V.K.Umadevi.

Aryabhata gives the radius of the planetary orbits in terms of the radius of the Earth/Sun orbit as essentially their periods of rotation around the Sun. He believes that the Moon and planets shine by reflected sunlight, incredibly he believes that the orbits of the planets are ellipses. He correctly explains the causes of eclipses of the Sun and the Moon.

Aryabhata gave an accurate approximation for π. He wrote in the Aryabhatiya the following:-

Add four to one hundred, multiply by eight and then add sixty-two thousand. the result is approximately the circumference of a circle of diameter twenty thousand. By this rule the relation of the circumference to diameter is given.

This gives π = 62832/20000 = 3.1416 which is a surprisingly accurate value. In fact π = 3.14159265 correct to 8 places.

The Surya Siddhanta contains the roots of modern trigonometry. It uses sine (jya), cosine (kojya or "perpendicular sine") and inverse sine (otkram jya) for the first time, and also contains the earliest use of the tangent and secant when discussing the shadow cast by a gnomon in verses 21–22 of Chapter 3:

Of [the sun's meridian zenith distance] find the jya ("base sine") and kojya (cosine or "perpendicular sine"). If then the jya and radius be multiplied respectively by the measure of the gnomon in digits, and divided by the kojya, the results are the shadow and hypotenuse at mid-day.

In modern notation, this gives the shadow of the gnomon at mid-day as

s = \frac{g \sin \theta}{\cos \theta} = g \tan \theta

and the hypotenuse of the gnomon at mid-day as

h = \frac{g r}{\cos \theta} = g r \frac{1}{\cos \theta} = g r \sec \theta

where \ g is the measure of the gnomon, \ r is the radius of the gnomon, \ s is the shadow of the gnomon, and \ h is the hypotenuse of the gnomon.

The contributions of the Namboothiris in Astrology, Astronomy and Mathematics have been immense. They had a capacity for unmistakable and sharp observations on the natural phenomena and accurate ability of deducting complicated theoretical formulae. The works of about 20 prominent ones among them during a long period of about a millenium between the seventh and the eighteenth century (AD) are enumerated here.

1. Bhaaskaraachaaryan - I (early 6th century AD)

Formost among Ganithajnans (astrologer / mathematician) in the entire Bhaaratham (India), Bhaskaran-I, hailed from Kerala, according to experts. In 522 AD he wrote "Mahaa Bhaaskareeyam", also known as "Karma Nibandhham". A Vyaakhyaanam (explanations and discussions) on Aaryabhateeyam as well as a condensed version - "Laghu Bhaaskareeyam" - of Aaryabhateeyam, have also come down to us.

(Bhaaskaraachaaryan-II who wrote "Leelaavathy" lived in the 11th century).

2. Haridathan (650 - 750 AD)

Though the Aarybhata system had been followed in calculating the planetary positions, Namboothiri scholars recognised variations between the computed and observed values of longitudes of the planets. A new system called "Parahitham" was proposed by Haridathan through his famous works "Graha-Chakra-Nibandhhana" and "Mahaa-Maarga-Nibandhhana". In 683 AD, this system was accepted throughout Kerala on the occasion of the 12-yearly Mahaamaagha festival at Thirunavaya, and is recorded in many later works. Haridathan introduced many improvements over Aarybhata system, like using the more elegant Katapayaadi (Click here) system of notation in preference to the more complicated Aarybhataa's notation.

Haridathan introduced the unique system of enunciating graded tables of the sines of arcs of anomaly (Manda-jya) and of conjugation (Seeghra-jya) at intervals of 3° 45' to facilitate the computation of the true positions of the planets. One of the corrections introduced by Haridathan to make the Aarybhata's results more accurate, is the "Sakaabda Samskaaram".

3. Aadi Sankaran (788 - 820 AD)

Sree Sankaran was born in Kalady in Central Kerala (nearly 50 km north east of Kochi) on the banks of river Periyar as the son of Kaippilly Sivaguru Namboothiri and Arya Antharjanam (Melpazhur Mana). Scientific concepts naturally evolved from this highly logical and rational intellect. It is believed that Sree Sankaran was the first mathematician to moot the concept of Number Line. [Ref: "Sankara Bhaashyam" (4-4-25) of the "Brihadaaranyaka Upanishad"]. It was Sree Sankaran who first expounded the idea of assigning a set of natural numbers to a straight line. As the number of elements in a set of natural numbers is infinite, it requires a symbol of infinity to represent them. A straight line can be considered to be infinitely long. Sankaran adopted a straight line as a symbol of infinity. A straight line can be divided to infinite number of parts and each of these parts can be assigned the value of a particular number. This is called number line. Though his concept lacks the perfection of modern number line theory, Sree Sankaran exhibited his intellectual ingenuity in conceiving such a novel idea.

Yet another example for Sree Sankaran's unbiased and pure scientific pursuit of knowledge could be seen in the second "Slokam" of "Soundarya Lahari" [a collection of 100 Slokams in praise of Goddess Durga written by Sree Sankaran]. In the Slokam "Thaneeyaamsam paamsum thava charana pankeruhabhavam", we can see a hint to the theory of inter-convertibility of mass and energy. Famous scientist Albert Einstein put forward this theory much later. Einstein said mass can be converted to energy and vice-versa according to the equation E = MC², where E = Energy released, M = Mass of the substance, and C = Velocity of light = 3 x 10¹º cm/sec.

In another context, Sree Sankaran postulated that the diameter of Sun is 1 lakh "Yojanas". Later the modern scientific community calculated the diameter which agreed very closely with (just 3% error) the value provided by Sankaran.

4. Sankaranarayanan (9th century)

This scholar from "Kollapuri" (Kollam) in Kerala has written a commentary (Vyaakhhyaanam) of the "Laghu Bhaaskareeyam" of Bhaaskaraachaaryan-I, titled "Sankaranaaraayaneeyam". The Granthham is dated 869 AD (ME 44).

5. Sreepathy (around 1039 AD)

Sreepathy (Kaasyapa Gothram) has described methods for calculating the "Shadbalam" of the planets and stars. Prescribing of consequences should be based on these "Balams". His works include "Aarybhateeya Vyaakhhyaanams" such as "Ganitha Thilakam", "Jaathaka Karma Padhhathi" and "Jyothisha Rathna Maala".

6. Thalakkulathu Bhattathiri (1237 - 1295 AD)

This Govindan Bhattathiri is believed to have been born in ME 412 in Thalakkulam of Aalathur Graamam, about three kilometer south of Tirur. The Illam does not exist anymore. His mother was apparently from Paazhoor. He is said to have left Keralam (to Paradesam, possibly Tamil Nadu) and studied the "Ulgranthhams" in Jyothisham under a scholar by name Kaanchanoor Aazhvaar, returned and prayed for a dozen years to Vadakkunnathan at Thrissur.

Bhattathiri's major work is the renowned Jyothisha Granthham "Dasaadhhyaayi". It is a majestic "Vyaakhyaanam" of the first ten chapters of the famous 26-chapter "Brihajjaathakam" in the field of Jyothissaasthram, written by Varaahamihiran of Avanthi, a sixth century scholar. Bhattathiri felt that the "Aachaaryan" had not covered anything significantly more in the rest of the chapters and therefore, left them altogether. There are also other works like "Muhoortha Rathnam" to his credit.

7. Sooryadevan

This Namboothiri (Somayaaji) scholar is better known as Sooryadeva Yajwaavu. "Jaathakaalankaaram" is Sooryadevan's Vyaakhyaanam for Sreepathy's (No. 5, above) "Jaathaka Karma Padhhathi". His other works include a "Laghu Vyaakhhyaanam" (simple explanation) of Aaryabhateeyam, called "Bhataprakaasam", as well as Vyaakhhyaanams for Varaahamihiran's "Brihadyaathra" and for Mujjaalakan's "Laghu Maanava Karanam".

Madhavan of Sangamagraamam, as he is known, holds a position of eminence among the astute astronomers of medieval Kerala. He hailed from Sangama Graamam, the modern Irinjalakuda, near the railway station. Madhavan was the treacher of Parameswaran, the promulgator of Drigganitha school of Astronomy, and is frequently quoted in the medieval astronomical literature of Kerala as Golavith (adept in spherics).

He is the author of several important treatises on Mathematics and Astronomy. The "Venvaaroham" explaining the method for computation of the moon and the moon-sentences, "Aganitham", an extensive treatise on the computation of planets, "Golavaadam", "Sphhuta-Chandraapthi", "Madhyama Nayana Prakaaram" are some of his important works.

Besides these works, a number of stray verses of Madhavan are quoted by later astronomers like Neelakandha Somayaaji, Narayanan the commentator of Leelaavathy, Sankaran the commentator of Thanthrasangraham, etc. One of his significant contributions is his enunciatiation of formulae for accurate determination of the circumference of a circle and the value of p by the method of indeterminate series, a method which was rediscovered in Europe nearly three centuries later by James Gregory (1638 - 75 AD), Gottfried Wilhelm Leibniz (1646 - 1716 AD) and Newton (1642, "Principia Mathematicia"). His five Paraspara-Nyaaya contains the enunciation for the first time in the world, of the formula for the sine of sum of two angles. sine (A + B) = sine A cos B + cos A sine B This is known as "Jeeve Paraspara Nyaaya".

The ideas of Calculus and Trigonometry were developed by him in the middle of the 14th century itself, as can be verified by his extensive mathematical and astronomical treatises and quotations by later authors.

Madhavan deserves, in all respects, to be called the Father of Calculus and Spherical Trigonometry. For a detailed appreciation of his contribution, refer to the excellent paper of R G Gupta,"Second Order of Interpolation of Indian Mathematics", Ind, J.of Hist. of Sc. 4 (1969) 92-94.

Again Madhavan provides the power series expansions for sin x and cos x for an arc x correct to 1/3600 of a degree.

Vatasseri was a great scientist who contributed much to Astronomy and Mathematics. He was from Vatasseri Mana on the north bank of river Nila (Bhaarathappuzha) near its mouth in a village called Aalathiyur (Aswathha Graamam). This is near the present Tirur of Malappuram district. He was a Rigvedi (Aaswalaayanan) of Bhrigu Gothram.

"Drigganitham" was his greatest contribution. The seventh century "Parahitha Ganitham" for calculations and projections in Astronomy continued its popularity for a few centuries, with some later modifications made by Mujjaalakan, Sreepathy and others, for correcting the differences found with actual occurences. But it was Parameswaran who, as a result of over fifty years of systematic observations and research on movements of celestial bodies, estimated the error factor and established a new method called Drig Sidhham as explained in his popular Drigganitham (ME 606, 1430-31 AD). He suggested the use of "Parahitham" for "Paralokahitham" such as Thithhi, Nakshthram, Muhoortham, etc., and his own "Drigganitham" for "Ihalokahitham" like "Jaathakam", "Graha Moudhhyam", "Grahanam", etc. Unfortunately, Drigganitham Granthham has not been traced so far.

Yet another of his contribution was a correction to the angle of precision of equinox mentioned by his disciple, Kelalloor Somayaaji (vide 15, below) in his "Jyothirmeemaamsa" (ch. 17). The 13 ½° suggested by Mujjaalakan was rectified by him to 15°.

There are numerous works to his credit, apart from Drigganitham. The 3-volume, 302 verse "Gola Deepika" (1443 AD) explaining about the stars and earth in very simple terms, "Jaathaka Padhhathy" in 41 verses, "Soorya Sidhhantha Vivaranam", "Grahana Mandanam", "Grahanaashtakam", "Vyatheepaathaashtaka Vrththi" in 500 verses or Slokams. (The last three are believed by experts to be his works), "Aachaarya Samgraham", "Grahana Nyaaya Deepika", "Chandra-Chhaayaa-Ganitham", "Vaakya Karmam" and "Vaakya Deepika" are his well-known works.

He has written superb commentaries such as "Sidhhantha Deepika" on Govindaswamy's Mahaa Bhaaskareeyam; "Karma Deepika" or "Bhata Deepika" on Aarya Bhateeyam; "Muhoortha Rathna Vyaakhyaa" on Govindaswamy's Muhoortha Rathnam; Leelavathee Vyaakhyaa on the famous mathematical treatise, Leelavathy of Bhaaskaraachaarya-II; "Laghu Bhaaskareeya Vyaakhyaa" on Laghu Bhaaskareeyam of Bhaaskaraachaarya-I; "Jaathaka Karma Padhhathee Vyaakhyaa" on Sreepathy's 8-chapter work on Jyothisham; the one on "Laghu Maanasam" of Mujjaalakan; "Jaathakaadesa Vyaakhyaa"; and "Prasna-Nashta Panchaasikaavrthy" also called "Paarameswari" based on the work of Prathhuyasass, son of Varaahamihiran.

Undoubtedly, there had not been many scholars of his calibre in the annals of history in the realm of Astronomy.

10. Damodaran Namboodiri

Damodaran Namboodiri is known for his work "Muhoorthaabharanam". It is believed that he had an ancestor by name Yajnan whose brother's son, Kesavan, was a great scholar, and that Damodaran was Kesavan's younger brother. His family is said to have belonged to a village near Thriprangod, but it is clear that it was in Taliparamba Graamam. Mazhamangalam (Mahishamangalam, vide 17, below) has recognised "Muhoorthaabharanam" as a reference work similar to "Muhoortha Rathnam" and other earlier works.

11. Narayanan Namboodiri

He has authored "Muhoortha Deepikam". He could be the same Narayanan, one of Vatasseri Parameswaran Namboodiri's teachers (Guru), as mentioned by Kelallur Chomaathiri (Neelakandha Somayaaji, 15, below). "Muhoortha Deepikam" is also recognised as an authoritative work, by Mazhamangalam (17, below).

12. Puthumana Somayaaji (Chomaathiri)

He belonged to Puthumana Illam (Sanskritised as Noothana Graamam) of Chovvaram (Sukapuram) Graamam. He is believed to have been a contemporary of Vatasseri Namboodiri, during the 15th century AD.

His famous works are "Karana Padhhathi" which is a comprehensive treatise on Astronomy in ten chapters completed in the year ME 606 (1430-31 AD), the same year as Vatasseri Namboodiri's "Drigganitham"; "Nyaaya Rathnam", an 8-chapter Ganitha Granthham; "Jaathakaadesa Maargam"; "Smaartha-Praayaschitham"; "Venvaarohaashtakam"; "Panchabodham"; "Grahanaashtakam"; and "Grahana Ganitham".

To his credit is also an important mathematical equation to calculate the tangent (tan) value of an angle, as:

He was considered to be an authority in the fields of Vaasthusaastram (Indian Architecture), Mathematics and Tanthram. Born in 1428, Chennas Narayanan Namboodiripad authored a book titled "Thanthra Samuchayam" which is still considered as the authentic reference manual in the field of temple architecture and rituals. In this Granthham , while elaborating on various points of Indian architectural practices, he has dealt with many mathematical principles also. The following are noteworthy.

a) A method of arriving at a circle starting with a square, and successively making it a regular octagon, a regular 16-sided, a 32-sided, 64-sided polygons, etc. In this method some geometrical steps have been suggested. b) Co-ordinate system of fixing points in a plane. c) Converting a square to a regular hexagon having approximately equal area. d) Finding the width of a regular octagon, given the perimeter.

He is one of the teachers of Kelallur Chomaathiri, and was a scholar in both Astronomy and Vedaantham. His treatise "Aachaara Deepika" is on Jyothisham.

15. Kelallur Neelakandha Somayaaji (1465 - 1545)

He is one of the foremost astronomers of Kerala and considered an equal to Vatasseri Parameswaran Namboodiri, and known popularly as Kelallur Chomaathiri. He was born to Jathavedan and Arya in Kelallur (or Kerala Nallur, Kerala-Sad-Graamam in Sanskrit) Mana of Thrikkandiyur (Sree Kundapuram in Sanskrit), near Tirur, and belonged to Gaargya Gothram, Aaswalaayana Soothram of Rigvedam. Kelallur Mana later became extinct and their properties merged with Edamana Mana. They were staunch devotees at Thriprangot Siva temple.

He is said to be a disciple of one Ravi who taught him Vedaantham and the basics of Astronomy and of Vatasseri Damodaran Namboodiri (son of the famous Parameswaran Namboodiri) who trained him in Astronomy and Mathematics. According to Ulloor, he lived during 1465 and 1545 (roughly), though according to another version, he was born on June 17, 1444 on a Wednesday.

His most important work is "Thanthra Samgraham" (a treatise on Mathematics and Astronomy) in eight chapters with 432 verses, and apparently written in an unbelievable six days from Meenam 26 of 676 ME to Metam 1 the same year! The lucid manner in which difficult concepts are presented, the wealth of quotations, and the results of his personal investigations and comparative studies make this work a real masterpiece. Two commentaries on this work, "Yukthi Bhaasha" (in Malayalam) by Paarangot Jyeshthhadevan Namboodiri (No. 16 below) and "Yukthi Deepika" by Sankara Varier, themselves indicate the importance of the original work.

Another of his important works is a "Bhaashyam" (commentary) on "Aaryabhateeyam". In his book "Jyorthir Meemaamsa", he demonstrates his intellectual and scientific thinking. Some of his other works are "Chandra Chhaayaa Ganitham" (calculations relating to moon's shadow), "Sidhhantha Darpanam" (mirror on the laws of Astronomy) and its Vyaakhyaa, "Golasaaram" (quintessence of spherical Astronomy), "Grahana Nirnayam", "Grahanaashtakam", "Graha Pareekshaa Kramam", and "Sundara Raaja Prasnotharam". He postulated that the ratio of circumference to diameter of a circle could never be a rational number. His commentary on Aaryabhateeyam shows that his scholastic abilities extend beyond Jyothisham and Vedaantham, to the realms of Meemaamsa, Vyaakaranam and Nyaayam.

He was born in Paaragottu Mana situated near Thrikkandiyur and Aalathur on the banks of river Nila. Vatasseri Damodaran Namboodiri was his teacher. He wrote a Malayalam commentary, "Yukthi Bhaasha" for "Thanthra Sangraham" of Kelallur Neelakandha Somayaaji. It forms an elaborate and systematic exposition of calculation methods in Mathematics in its first part and Astronomy in the second part. The treatment is in a rational and logical manner, and may turn out to be an asset to our scientific community, if properly translated and studied. He is also the author of "Drik Karanam", a comprehensive treatise in Malayalam on Astronomy, composed in 1603 AD.

He was a member of Mahishamangalam (Mazhamangalam) Mana of Peruvanam in Thrissur district. His father Sankaran Namboothiri has written several Granthhams on Astronomy in Malayalam. Renouned scholar Sankara Varier has written a commentary "Kriyaakramakari" in Malayalam for the popular Mathematical manual "Leelavathy" (of Bhaskaraachaarya) but before commencing the 200th Slokam, he expired. It was Mahishamangalam Narayanan Namboodiri who, at the age of 18, took up the challenge of completing it. He was popularly known as "Ganitha Vith" [Maths wizard]. After successfully completing "Kriyaakramakari", Narayanan Namboodiri wrote his own commentary "Karmadeepika" for "Leelavathy". "Upa Raaga Kriyaa Kramam" was his original work in the related topic. He has authored many Granthhams on subjects other than Astronomy, including Smaartha Praayaschitha Vimarsanam, Vyavahaara Mala [ethical code of conduct], Mahishamangalam Bhaanam, Uthara Raamaayana Champu, Raasa Kreedaa Kaavyam, Raaja Ratnaavaleeyam [in praise of Kerala Varma, Prince of Kochi), Daarikavadham, and Paarvatheesthuthi.

18. Mathur Nambudiripad

The Granthham, "Muhoortha Padavi" (the second) is credited to Mathur Nambudiripad, whose name is not known. He has condensed the old "Muhoortha Padavi" into an amazingly short version with just 35 Slokams (verses). Since Mazhamangalam of mid-sixteenth century AD, in his "Baala Sankaram" has referred to Muhoortha Padavi, it is possible that Mathur Nambudiripad lived during the second half of the 15th century AD. Apart from Mazhamangalam's commentary on this Granthham, there are: a short one in Sanskrit, "Muhoortha Saranee Deepam" (author unknown); a detailed one in Sanskrit, "Varadeepika" by Purayannur Parameswaran Nambudiripad; and yet another one in Malayalam, "Muhoortha Bhaasha" by Aazhvaancheri Thampraakkal.

19. Narayanan Namboodiri

One Narayanan has written a commentary on Bhaaskaraachaaryan's Leelaavathy, which has been variously referred to as "Karmadeepika", "Karmadeepakam" and "Kriyaakramakari". The work is well-focussed and neither too elaborate nor too short.

Another of his works is " Karmasaaram" which discusses "Grahasphhutaanayanam" and other aspects of the Drik tradition. It is in four chapters and may have been written during the second half of the 16th century AD.

20. Chithrabhanu Namboodiri (16th century)

Born in Chovvara (Sukapuram) Graamam, Chithrabhanu Namboodiri was a mathematician and has written a Granthham titled "Eka Vimsathi Prasnothari". It is said that Sankara Varier, another scholar (mentioned earlier) who wrote the commentary "Kriyaakramakari" was Chithrabhanu Namboodiri's disciple. Varier has, at several occasions, quoted his master.

Chithrabhanu Nambudiri's "Eka Vimsathi Prasnothari" gives a method of solving the binomials (A + B), (A - B), (A² + B²), (A³ + B³), (A³ - B³), AB, etc. Given any two of these, the book gives twentyone different ways to solve for A and B. As he is believed to be the master of Sankara Varier, his period could be 16th century.

The achievements of such and other Kerala mathematicians were, at first, brought to the notice of scholars, both Indian and western, by Charles M Whilsh who presented a paper on the subject before the Royal Asiatic Society of Great Britain and Ireland, 3 (1835) (509 - 523).

BIBLIOGRAPHY Sanskrit: 1. Aryabhatiya of Aryabhata with Nilakanta Somasutvan's Com. Ed. Pub. in 3 parts by K Sambasiva Sastri. Trivandrum, 1977. 2. Drigganitham of Parameswara. Cr. Ed. By K V Sarma, Vishveshvaranand Vedic Research Institute, Hoshiarpur, 1963. 3. Goladipika of Parameswara. Ed. Tr. K V Sarma, Madras, 1956 - 57. 4. Grahananyayadipika. Cr. Ed. Tr. K V Sarma, V V R I , Hoshiarpur, 1966. 5. Grahanashtaka of Parameswara. Ed. Tr. K V Sarma, Madras, 26 Parts(I-IV),47-60,1961. 6. Jyothirmimamsa of Nilakantha Somayaji. Ed. K V Sarma, V V B I S, Hoshiarpur, 1977. 7.Tantrasangraha of Nilakantha Somayaji. Cr. Ed. K V Sarma, V V B I S & I S, Hoshiarpur, 1977. 8. Sphutachandrapti of Madhava. K V Sarma, V V I, Hoshiarpur, 1973.

English: 1. Rajagopal C T and Venkatarama A - The sine and cosine series. J. Asiatic Soc. of Bengal. 3rd Series. 15 pp. 1 - 13, 1949. 2. Rajagopal C T and Aiyar T V Vedamurthy - On the Hindu Proof of Gregory Series. Scripta Mathematica 17, Nos.1-2, pp 65-74, 1951. 3. Sarma K V-A History of the Kerala School of Hindu Astronomy. VVI, Hoshiarpur, 1972. 4. Swarup G, Bag A K and Shukla K S - History of Oriental Astronomy. University Press, Cambridge, 1987. 5. Krishnan Namboodiri, Chekrakkal (Dr) - PhD Thesis

Malayalam: 1. Rao Sahib, Mahakavi Ulloor S Parameswara Aiyer - Kerala Sahitya Charitram, Vol. 1.(4th Ed.) 1974 & Vol. 2 (4th Ed.) 1979; Published by Department of Publications, University of Kerala, Thiruvananthapuram.

Date: Friday, 14-October-2011, 10:02 AM | Message # 15

--dragon lord--

Group: Users

Messages: 4452

Status: Offline

American mathematician, A. Seindenberg, has, for example, shown that the Shulbasutras, the ancient Vedic science of mathematics, constitute the source of mathematics in the antique world of Babylon to Greece: "The arithmetic equations of the Shulbasutras were used in the observation of the triangle by the Babylonians as well as in the edification of Egyptian pyramids, in particular the funeral altar in the form of pyramid known in the Vedic world as smasana-cit."

In astronomy too, the "Indus" (from the valley of the Indus) have left a universal legacy, determining for instance the dates of solstices, as noted by 18th century French astronomer Jean Sylvain Bailly: "The movement of stars which was calculated by Hindus 4,500 years ago, does not differ even by a minute from the tables which we are using today." And he concludes: "The Hindu systems of astronomy are much more ancient than those of the Egyptians-even the Jews derive from the Hindus their knowledge." There is also no doubt that the Greeks heavily borrowed from the "Indus." Danielou notes that the Greek cult of Dionysus, which later became Bacchus with the Romans, is a branch of Shaivism: "Greeks spoke of India as the sacred territory of Dionysus, and even historians of Alexander the Great identified the Indian Shiva with Dionysus and mention the dates and legends of the Puranas."

French philosopher and Le Monde journalist Jean-Paul Droit recently wrote in his book, The Forgetfulness of India, that "the Greeks loved so much Indian philosophy that Demetrios Galianos had even translated the Bhagavad-gita."

* India invented the Number System. Zero was invented by Aryabhatta.

* The World's first university was established in Takshashila in 700BC. More than 10,500 students from all over the world studied more than 60 subjects. The University of Nalanda built in the 4th century BC was one of the greatest achievements of ancient India in the field of education.

* Sanskrit is the mother of all the European languages. Sanskrit is the most suitable language for computer software - a report in Forbes magazine, July 1987.

* The art of Navigation was bornin the river Sindhu 6000 years ago. The very word Navigation is derived from the Sanskrit word NAVGATIH. The word navy is also derived from Sanskrit 'Nou'.

* Bhaskaracharya calculated the time taken by the earth to orbit the sun hundreds of years before the astronomer Smart. Time taken by earth to orbit the sun: (5th century) 365.258756484 days.

* The value of pi was first calculated by Budhayana, and he explained the concept of what is known as the Pythagorean Theorem. He discovered this in the 6th century long before the European mathematicians.

* Algebra, trigonometry and calculus came from India. Quadratic equations were by Sridharacharya in the 11th century. The largest numbers the Greeks and the Romans used were 106 whereas Hindus used numbers as big as 10**53(10 to the power of 53) with specific names as early as 5000 BCE during the Vedic period. Even today, the largest used number is Tera 10**12(10 to the power of 12).

* IEEE has proved what has been a century old suspicion in the world scientific community that the pioneer of wireless communication was Prof. Jagdish Bose and not Marconi.

* The earliest reservoir and dam for irrigation was built in Saurashtra. According to Saka King Rudradaman I of 150 CE a beautiful lake called Sudarshana was constructed on the hills of Raivataka during Chandragupta Maurya's time.

* Sushruta is the father of surgery. 2600 years ago he and health scientists of his time conducted complicated surgeries like cesareans, cataract, artificial limbs, fractures, urinary stones and even plastic surgery and brain surgery. Usage of anesthesia was well known in ancient India. Over 125 surgical equipment were used. Deep knowledge of anatomy, physiology, etiology, embryology, digestion, metabolism, genetics and immunity is also found in many texts.

* The place value system, the decimal system was developed in India in 100 BC.

What ancients did for us - The INDIANS

The Story of 1 (One) - Terry Jones - BBC

Science of mathematics in Ancient India clip taken from BBC The Story of Maths (2009) documentary

Albert Einstein said: We owe a lot to the Indians (Hindus), Who taught us how to count, without which no worthwhile scientific discovery could have been made. Mark Twain said: India is, the Cradle of the Human race, the birthplace of human speech, the Mother of history, the grandmother of legend, and the great grand mother of tradition. Our most valuable and most instructive materials in the history of Mankind are treasured up in India only. French scholar Romain Rolland said: If there is one place on the face of earth where all the dreams of living men have found a home from the very earliest days when Man began the dream of existence, it is India. Hu Shih, former Ambassador of China to USA said: India conquered and dominated China culturally for 20 centuries without ever having to send a single soldier across the border.Keith Bellows, National Geographic Society Said : "There are some parts of the world that, once visited, get into your heart and won't go. For me, India is such a place. When I first visited, I was stunned by the Richness of the land, by its lushbeauty and exotic architecture, by its ability to overload the senses with the pure, concentrated intensity of its colors, smells, tastes, and sounds... I had been seeing the World in black & white and,when brought face-to-face with India, experienced everything re-rendered in brilliant Technicolor."You may know some of these facts. These Facts were recently published in a German magazine, which deals with World history Facts about India. 1. India never invaded any country in her last 10000 years of history. 2. India invented the Number System. Zero was invented by Aryabhatta. 3. The World's first university was established in Takshila in700BC. More than 10,500 students from all over the world studied more than 60subjects. The University of Nalanda built in the 4th century BC was one of the greatest achievements of ancient India in the field of education. 4. Sanskrit is the mother of all the European languages. Sanskrit is the most suitable language for computer software - a report in Forbes magazine, July 1987. 5. Ayurveda is the earliest schoolof medicine known to humans. Charaka, the father of medicine consolidated Ayurveda 2500 years ago.Today Ayurveda is fast regaining it's rightful place in our civilization. 6. Although modern images of India often show poverty and lack of development, India was the richest country on earth until the time of British invasion in the early 17th Century. Christopher Columbus was attracted by India's wealth. 7. The art of Navigation was born in the river Sindh 6000 years ago. The very word Navigation is derived from the Sanskrit word NAVGATIH. The word navy is also derived from Sanskrit'Nou'. 8. Bhaskaracharya calculated the time taken by the earth to orbit the sun hundreds of yearsbefore the astronomer Smart. Time taken by earth to orbit the sun: (5th century)365.258756484 days. 9. The value of "pi" was first calculated by Budhayana, and he explained the concept of what is known as the Pythagorean Theorem. He discovered this in the 6th century long before the European mathematicians. 10.Algebra, Trigonometry and Calculus came from India. Quadratic equations were by Sridharacharya in the 11th century. The largest numbers the Greeks and the Romans used were 106 where as Hindus used numbers as big as10**53(10 to the power of 53)with specific names as early as 5000 BCE during the Vedic period. Even today, the largest used number is Tera 10**12(10 to the power of 12). 11. According to the Gemological Institute of America, up until 1896, India was the only source for diamonds to the world. 12. USA based IEEE has proved what has been a century old suspicion in the world scientific community that the pioneer of wireless communication was Prof. Jagdeesh Bose and not Marconi. 13. The earliest reservoir and damfor irrigation was built in Saurashtra. 14. According to Saka King Rudradaman I of 150 CE a beautiful lake called'Sudarshana' was constructed on the hills of Raivataka during Chandragupta Maurya's time. 15. Chess (Shataranja or AshtaPada) was invented in India. 16. Sushruta is the father of surgery. 2600 years ago he and health scientists of his time conducted complicated surgeries like cesareans, cataract, artificial limbs,fractures, urinary stones and even plastic surgery and brain surgery. Usage of anesthesiawas well known in ancient India. Over 125 surgicalequipment were used. Deep knowledge of anatomy, physiology, etiology, embryology, digestion, metabolism, genetics andimmunity is also found in many texts. 17. When many cultures were only nomadic forest dwellers over 5000 years ago, Indians established Harappan culturein Sindhu Valley Indus ValleyCivilization) 18. The place value system, the decimal system was developed in India in 100 BC.---------------- Google search about Vaimanika Shastra Ancient Indian Aeronautics Technology it is about Aeroplane written in old Sanskrit.

Ancient India's Contributions to the World (Full Documentary)

India is one of the oldest and richest civilizations in the world. It is home to the world's first planned cities, where every house had its own bathroom and toilet five thousand years ago.

The Ancient Indians have not only given us yoga, meditation and complementary medicines, but they have furthered our knowledge of science, maths -- and invented Chaturanga, which became the game of chess.

According to Albert Einstein, they "taught us how to count", as they invented the numbers 1-9 and 'zero', without which there would be no computers or digital age. Unfairly we call this system of counting Arabic numbers -- a misplaced credit.

Two thousand years ago the Indians pioneered plastic surgery, reconstructing the noses and ears on the faces of people who had been disfigured through punishment or warfare. They performed eye operations such as cataract removal and invented inoculation to protect their population from Smallpox, saving thousands of lives.

Hosted by Jack Turner. Published by Discovery Channel, 2007.

They Theorized Gravity Way Before The Western World

The verse 10.22.14 of Rig Veda says:

“This earth is devoid of hands and legs, yet it moves ahead. All the objects over the earth also move with it. It moves around the sun”.

They Knew The Speed Of Light Way Before The Rest Of The World Knew It

A Vedic scholar by the name of Sayana discovered the speed of light back in the 14th century AD.

His quote which translates to:

“With deep respect, I bow to the sun, who travels 2,202 yojanas in half a nimesha.”

A yojana is approximately 9 miles; a nimesha is 16/75 of a second.

So, 2,202 yojanas x 9 miles x 75/8 nimeshas = 185,794 miles per second which is remarkably equal to the actual value of 186 282.397 miles per second.

They Knew The Science Behind Eclipses When The Rest Of The World Was Scared Thinking Eclipses Are Caused By Some Sort Of Black Magic

Rig Veda 5.40.5 has a phrase which translates to:

“O Sun! When you are blocked by the one whom you gifted your own light (moon), then earth will be surprised by the sudden darkness.”

This is a remarkably accurate description of a solar eclipse.

The Vedas’ detailed descriptions of the universe, planets, and other phenomena demonstrates the vast knowledge of the people of those times far before modern civilization even started to exist.

Nikola Tesla Took Inspiration From Swamy Vivenakanda And Indian Vedas For His World Acclaimed Work

After his lab was burned down and his life’s work had vanished. Nikola Tesla studied the concept of Prana and Akasha to work on FORCE and MATTER. He developed a new perspective on the world and started viewing world in terms of frequencies and energy which resulted in him establishing his concepts on energy.

We intended to write this article not to take sides or argue against anyone’s beliefs but only to give a small idea on the intensity of the knowledge and imagination of our ancestors.

They even had the concept of sustainable energy, projectile science, and many others like Thrust, momentum, Thermodynamics, Astrophysics etc to name a few.

They Measured The Circumference Of The Earth

Brahmagupta in the 7th century CE proposed that the circumference of the Earth to be 36,000 km, which is close to the actual figure of 40,075 km, with an error margin of 1%.